

Thermochimica Acta 351 (2000) 47-50

thermochimica acta

www.elsevier.com/locate/tca

Short communication The enthalpies of solution in water of complexes of zinc with histidine

Sheng Li Gao^{*}, Yu Dong Hou, Mian Ji, San Ping Chen, Qi Zhen Shi

Department of Chemistry, Northwest University, Xian 710069, China

Received 25 September 1999; received in revised form 2 December 1999; accepted 21 January 2000

Abstract

The enthalpies of solution in water of L- α -histidine and its zinc complexes Zn(His)SO₄·H₂O, Zn(His)X₂·1/2H₂O (X=NO₃⁻, OAc⁻, Cl⁻) have been measured at 298.15 K. The standard enthalpies of formation of His(aq) and Zn(His)²⁺(aq) have been calculated. The reliability of the experiment has been discussed. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: L-α-Histidine; Zinc salts; Enthalpies of solution; Enthalpies of formation

1. Introduction

Zinc is one of the necessary trace elements in human body. Amino acids are basic units of proteins. The complexes of zinc with α -amino acids as addictives have a wide application in medicine, foodstuff and cosmetics [1,2]. The preparation of the complexes of zinc with amino acids has been reported in the literature [1-4]. The combustion energy of L- α -histidine has been measured and the enthalpy of its formation has been calculated [5]. In the literature [6], the preparation, combustion energies, and enthalpies of formation of Zn(His)SO₄·H₂O, $Zn(His)(NO_3)_2 \cdot 1/2H_2O$, $Zn(His)(OAc)_2 \cdot 1/2H_2O$ and Zn(His)Cl₂·1/2H₂O has been reported, while studies of the enthalpies of solution in water for lemplexes of zinc with histidine have not been reported in the literature.

* Corresponding author. Tel.: +86-029-830-2058;

fax: +86-029-830-3511.

E-mail address: hwws@nwn.edu.cn (S.L. Gao)

In this paper, the enthalpies of solution in water of zinc complexes with L- α -histidine have been determined using heat conduction microcalorimeter. The standard enthalpies of formation of L- α -His(aq) and Zn(His)²⁺(aq) have been calculated through thermochemical equation.

2. Experimental

2.1. Preparation and composition of the complexes

Referring to the literature [5], L- α -histidine (B.R., purity >99.9%, made in Shanghai Kanda) was recrystallized and analyzed. Its purity and density were 99.99% and 1.136 g cm⁻³, respectively. It decomposed at 277°C. Referring to the literature [4], four solid complexes of zinc with histidine of mole ratio 1:1 were prepared and put into a desiccator containing P₄O₁₀ until the weight of the complexes became constant. The analytical results are summarized in Table 1. Zn²⁺ was determined complexometrically

^{0040-6031/00/\$ –} see front matter 2000 Elsevier Science B.V. All rights reserved. PII: \$0040-6031(00)00409-3

Complexes	Zn^{2+}	His	С	Н	Ν
Zn(His)SO ₄ ·H ₂ O	19.38(19.54)	46.12(46.37)	21.37(21.54)	3.42(3.31)	12.63(12.56)
$Zn(His)(NO_3)_2 \cdot 1/2H_2O$	18.47(18.49)	43.74(43.88)	20.48(20.38)	2.81(2.85)	19.74(19.81)
Zn(His)(OAc) ₂ ·1/2H ₂ O	18.95(18.81)	44.98(44.63)	34.90(34.55)	4.49(4.35)	12.26(12.09)
Zn(His)Cl ₂ ·1/2H ₂ O	21.34(21.76)	51.73(51.64)	24.03(23.99)	3.36(3.35)	13.55(13.99)

Table 1 Analytical results related to the composition of the complexes (in %)^a

^a The data in brackets are calculated values.

with EDTA. Histidine was analyzed by the formalin method. The Zn^{2+} was removed by precipitating with $K_2C_2O_4$ before it was titrated. Carbon, hydrogen, and nitrogen analyses were carried out on a 1106-type elemental analyzer.

2.2. Experimental equipment and conditions

All measurements were carried out using a heat conduction microcalorimeter, type RD496-II [7] (Southwest Institute of Electron Engineering, China) and operated at 298.15 ± 0.005 K.

The experimental precison and accuracy of enthalpies of solution were checked frequently by measurement of the enthalpies of solution $(\Delta_{sol}H^{\theta}_{\infty})$ of crystalline KCl in deionized water at 298.15 K. The experimental value of $\Delta_{sol}H^{\theta}_{\infty}$ of 17.224±0.024 kJ mol⁻¹ is an excellent accord with that of 17.234 kJ mol⁻¹ reported in the literature [8]. This shows that the device for measuring the enthalpy of solution used in this work is reliable.

3. Results

3.1. Enthalpies of solution in water of L- α -histidine and its complexes with zinc

Results for the enthalpy of solution of L- α -histidine and its four complexes with zinc in deionized water at 298.15 K are given in Table 2, where *r* is the molar ratio $n(H_2O)/n(L-\alpha-His)$, $n(H_2O)/n(Zn(His)SO_4\cdot H_2O)$ or $n(H_2O)/n(Zn(His)X_2\cdot 1/2H_2O)$, $(X=NO_3^-, OAc^-, CI^-)$. Under experimental conditions, the pH of the final solutions were 5–6, which indicated that Zn^{2+} coordinated with histidine in water with a mole ratio of 1:1 [9], and no solid residue was observed in the solution after calorimetry. The solubility of L- α -histitine in water at 298.15 K is 4.87% [4]. After the completetion of dissolution of the samples, the solutions are far from saturation. Therefore, the dissolution processes of the samples can be expressed as follows:

$$L-\alpha-\text{His}(s) \xrightarrow{\Delta_{\text{sol}(1)}H_{m}^{\theta}} L-\alpha-\text{His}(aq,\infty)$$
(1)

$$\begin{aligned} &Zn(His)SO_4 \cdot H_2O(s) \stackrel{\Delta_{sol,(2)}H_m}{\to} Zn(His)^{2+}(aq,\infty) \\ &+ SO_4^{2-}(aq,\infty) + H_2O(l) \end{aligned} \tag{2}$$

$$Zn(His)(NO_3)_2 \cdot \frac{1}{2}H_2O(s) \xrightarrow{\Delta_{Sol,(3)}H_m^o} Zn(His)^{2+} \times (aq, \infty) + 2NO_3^-(aq, \infty) + \frac{1}{2}H_2O(l)$$
(3)

$$\begin{aligned} &Zn(His)(OAc)_{2} \cdot \frac{1}{2}H_{2}O(s) \stackrel{\Delta_{sol.(4)}H_{m}^{*}}{\to} Zn(His)^{2+} \\ &\times (aq,\infty) + 2OAc^{-}(aq,\infty) + \frac{1}{2}H_{2}O(l) \end{aligned} \tag{4}$$

$$\begin{split} &Zn(His)Cl_{2} \cdot \frac{1}{2}H_{2}O(s) \stackrel{\Delta_{sol.(5)}H_{m}^{\theta}}{\rightarrow} Zn(His)^{2+}(aq,\infty) \\ &+ 2Cl^{-}(aq,\infty) + \frac{1}{2}H_{2}O(l) \end{split}$$

Under experimental conditions, the greater values of *r* were used and the $\Delta_{sol}H_m^{\theta}$ remained unchanged with the weight of the sample. Therefore, the mean of $\Delta_{sol}H_m^{\theta}$ in Table 2 can be considered at infinite dilution.

3.2. Standard enthalpies of formation of L- α -His(aq) and Zn(His)²⁺(aq)

According to Hess's Law, the standard enthalpies of formation of L- α -His(aq) and Zn(His)²⁺(aq) were calculated through Eqs. (1) and (2):

$$\begin{split} \Delta_{\rm f,L-\alpha-His(aq)} H^{\theta}_{\rm m} &= \Delta_{\rm sol.(1)} H^{\theta}_{\rm m} + \Delta_{\rm f,L-\alpha-His(s)} H^{\theta}_{\rm m} \\ &= \left[(10.48 \pm 0.05) \right. \\ &+ \left(-435.39 \pm 1.54 \right) \right] \rm kJ \, mol^{-1} \\ &= -424.91 \pm 1.54 \, \rm kJ \, mol^{-1} \end{split}$$

Table 2	
Enthalpies of solution in water of L - α -histidine and complexes at 298 15 K	

Compounds	Mass (mg)	r	$\Delta_{\rm sol} H^{\theta}_{\rm m} ~({\rm kJ}~{\rm mol}^{-1})$	Mean $(kJ mol^{-1})$
L-α-His	5.952	11574	10.48	
	6.484	10624	10.44	
	7.396	9315	10.51	
	8.660	7955	10.47	
	8.758	7866	10.42	
	8.808	7821	10.55	$10.48 {\pm} 0.05$
Zn(His)SO ₄ ·H ₂ O	9.74	15255	-35.73	
	20.66	7192	-35.61	
	28.91	5139	-35.67	
	39.93	3721	-35.61	
	40.89	3634	-35.71	
	41.28	3599	-35.70	$-35.67{\pm}0.05$
Zn(His)(NO ₃) ₂ ·1/2H ₂ O	11.70	13417	-5.88	
	15.97	9855	-5.89	
	17.93	8750	-5.93	
	18.82	8341	-5.87	
	24.86	6315	-5.97	
	26.96	5823	-5.97	$-5.92{\pm}0.04$
Zn(His)(OAc) ₂ ·1/2H ₂ O	20.77	7431	-82.84	
	24.26	6362	-82.90	
	27.25	5664	-82.63	
	29.63	5209	-82.78	
	34.15	4520	-82.82	
	39.67	3891	-82.85	$-82.80{\pm}0.09$
Zn(His)Cl ₂ ·1/2H ₂ O	7.48	11837	-132.47	
	12.32	10830	-132.63	
	16.52	8077	-132.55	
	18.47	7224	-132.61	
	18.69	7139	-132.64	
	21.42	6229	-132.68	$-132.60{\pm}0.08$

 $\Delta_{\rm f,Zn(His)^{2+}(aq)}H^{\theta}_{\rm m}$

$$= \Delta_{\text{sol.}(2)} H_{\text{m}}^{\theta} + \Delta_{\text{f,Zn(His)SO4} \cdot \text{H}_2\text{O}(s)} H_{\text{m}}^{\theta} - \Delta_{\text{f,SO4}^{-}(\text{aq})} H_{\text{m}}^{\theta} - \Delta_{\text{f,H}_2\text{O}(1)} H_{\text{m}}^{\theta} = [(35.67 \pm 0.05) + (-1795.30 \pm 3.43) - (909.60 \pm 0.40) - (-285.830 \pm 0.042)] \text{ kJ mol}^{-1} = -635.54 + 3.45 \text{ kJ mol}^{-1}$$

Here, $\Delta_{\text{sol}.(1)}H_m^{\theta}$ and $\Delta_{\text{sol}.(2)}H_m^{\theta}$ are from Table 2, $\Delta_{f,L-\alpha-\text{His}(s)}H_m^{\theta}$ is from the literature [5], $\Delta_{f,Zn(\text{His})SO_4}H_2O(s)H_m^{\theta}$ is from the literature [6], $\Delta_{f,SO_4^2-(aq)}H_m^{\theta}$ and $\Delta_{f,H_2O(1)}H_m^{\theta}$ are from the literature [10].

4. Discussion

The standard enthalpies of formation of Zn(His)²⁺(aq) were also calculated through Eqs. (3)–(5). The results are -631.52 ± 2.99 , -632.89 ± 3.28 and -634.79 ± 3.96 kJ mol⁻¹, respectively. The $\Delta_{sol.(3)}H_m^{\theta}, \Delta_{sol.(4)}H_m^{\theta}$ and $\Delta_{sol.(5)}H_m^{\theta}$ were from Table 2. $\Delta_{f,Zn(His)(OAc)_2\cdot1/2H_2O}H_m^{\theta}=-1665.02\pm3.28$ kJ mol⁻¹ [6], $\Delta_{f,Zn(His)(NO_3)_2\cdot1/2H_2O}H_m^{\theta}=-979.26\pm1.95$ kJ mol⁻¹ [6], $\Delta_{f,Zn(His)(Cl_2\cdot1/2H_2O}H_m^{\theta}=-979.26\pm1.95$ kJ mol⁻¹ [6], $\Delta_{f,NO_3}(aq)H_m^{\theta}=-206.81\pm0.41$ kJ mol⁻¹ [11], $\Delta_{f,OAc^-(aq)}H_m^{\theta}=-486.01$ kJ mol⁻¹ [12], $\Delta_{f,Cl^-(aq)}H_m^{\theta}=-167.080\pm0.088$ kJ mol⁻¹ [9]. The values of $\Delta_{f,Zn(His)^{2+}(aq)}H_m^{\theta}$ were compared with each other and the error are 0.54, 0.47, 0.52 and 0.62%,

respectively. This indicated that the results of the experiment are reliable. Therefore, we suggest that the $\Delta_{f,Zn(His)^{2+}(aq)}H_m^{\theta}$ use the average value -633.69 ± 3.42 kJ mol⁻¹.

Acknowledgements

We thank the National Science Foundation of China and the Education Committee of Shaanxi Province for financial support.

References

 S. Taguchi, M. Inokuchi, N. Nakajima, M. Inomata, Y. Naitoh, Antipruritic drug and antipruriti composition, WO Patent 10 178, 1992-06-25.

- [2] Godfrey, J. Carl, Flavor improvement of zinc supplement for oral use, WO Patent 00 004, 1986-06-03.
- [3] S.L. Gao, J.R. Liu, M. Ji, X.W. Yang, Chin. Sci. Bull. 43 (18) (1998) 1527.
- [4] J.R. Liu, Y.D. Hou, S.L. Gao, M. Ji, Q.Z. Shi, Acta Chim. Sinica 57 (1999) 485.
- [5] X.W. Yang, J.R. Liu, S.L. Gao, Y.D. Hou, Q.Z. Shi, Thermochim. Acta 329 (1999) 109.
- [6] J.R. Liu, X.W. Yang, Y.D. Hou, S.L. Gao, Q.Z. Shi, Thermochim. Acta 329 (1999) 123.
- [7] N. Li, R.Z. Hu, Thermochim. Acta 231 (1994) 317.
- [8] R.C. Weast, CRC Handbook of Chemistry and Physics, 70th Edition, CRC Press, Boca Raton, FL, 1989, p. D-122.
- [9] I. Tsuneaki, H. Chitoshi, K. Norihisa, J. Fac. Fish. Anim. Husb., Hiroshima Univ. 14 (1) (1975) 15.
- [10] Report of the CODATA Task Group on key values for thermodynamics, J. Chem. Thermodyn. 10 (1978) 903.
- [11] J.D. Cox, D. Harrop, A.J. Head, J. Chem. Thermodyn. 11 (1979) 811.
- [12] P.W. Atkins, Physical Chemistry, 5th Edition, Freeman, New York, 1994.